CentOS Stream 8
Sponsored Link

TensorFlow : Install Docker Image (GPU)2021/04/14

 
Install TensorFlow which is the Machine Learning Library.
On this example, Install TensorFlow official Docker Image with GPU support and run it on Containers.
[1]
[2] Install and use TensorFlow Docker (GPU) by root user account.
If you'd like to run it by common users, refer to [4] section.
# Pull TensorFlow 2.4 image

[root@dlp ~]#
podman pull tensorflow/tensorflow:2.4.1-gpu
[root@dlp ~]#
podman images

REPOSITORY                       TAG        IMAGE ID      CREATED       SIZE
docker.io/tensorflow/tensorflow  2.4.1-gpu  edb49f6a133b  2 months ago  5.55 GB

# verify to run [nvidia-smi]

[root@dlp ~]#
podman run -e NVIDIA_VISIBLE_DEVICES=all --rm tensorflow:2.4.1-gpu nvidia-smi

Wed Apr 14 02:40:21 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce GTX 1070    Off  | 00000000:05:00.0 Off |                  N/A |
| 26%   34C    P5    24W / 180W |      0MiB /  8119MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

# verify to run TensorFlow

[root@dlp ~]#
podman run -e NVIDIA_VISIBLE_DEVICES=all --rm tensorflow:2.4.1-gpu \
python -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

2021-04-14 02:40:55.090070: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2021-04-14 02:40:57.452613: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-04-14 02:40:57.453836: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1
2021-04-14 02:40:57.682842: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:40:57.683734: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:05:00.0 name: GeForce GTX 1070 computeCapability: 6.1
coreClock: 1.7845GHz coreCount: 15 deviceMemorySize: 7.93GiB deviceMemoryBandwidth: 238.66GiB/s
2021-04-14 02:40:57.683793: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2021-04-14 02:40:57.690427: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2021-04-14 02:40:57.690515: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2021-04-14 02:40:57.693389: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2021-04-14 02:40:57.695669: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2021-04-14 02:40:57.703652: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2021-04-14 02:40:57.705661: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2021-04-14 02:40:57.705995: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2021-04-14 02:40:57.706190: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:40:57.707262: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:40:57.708184: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
2021-04-14 02:40:57.709312: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-04-14 02:40:57.709470: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:40:57.710391: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:05:00.0 name: GeForce GTX 1070 computeCapability: 6.1
coreClock: 1.7845GHz coreCount: 15 deviceMemorySize: 7.93GiB deviceMemoryBandwidth: 238.66GiB/s
2021-04-14 02:40:57.710445: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2021-04-14 02:40:57.710475: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2021-04-14 02:40:57.710529: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2021-04-14 02:40:57.710555: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2021-04-14 02:40:57.710578: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2021-04-14 02:40:57.710602: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2021-04-14 02:40:57.710652: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2021-04-14 02:40:57.710680: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2021-04-14 02:40:57.710781: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:40:57.711748: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:40:57.712652: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
2021-04-14 02:40:57.712736: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2021-04-14 02:40:58.437327: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:
2021-04-14 02:40:58.437377: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267]      0
2021-04-14 02:40:58.437393: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0:   N
2021-04-14 02:40:58.437676: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:40:58.438425: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:40:58.439151: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:40:58.439816: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7446 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:05:00.0, compute capability: 6.1)
tf.Tensor(916.9441, shape=(), dtype=float32)
[3] If SELinux is enabled, change policy.
[root@dlp ~]#
vi my-python.te
# create new

module my-python 1.0;

require {
        type container_t;
        type xserver_misc_device_t;
        type device_t;
        class chr_file { getattr ioctl map open read write };
}

#============= container_t ==============
allow container_t device_t:chr_file map;
allow container_t device_t:chr_file { getattr ioctl open read write };
allow container_t xserver_misc_device_t:chr_file map;

[root@dlp ~]#
checkmodule -m -M -o my-python.mod my-python.te

[root@dlp ~]#
semodule_package --outfile my-python.pp --module my-python.mod

[root@dlp ~]#
semodule -i my-python.pp

[4] To run CUDA and TensorFlow container by common users, it needs to change settings.
[root@dlp ~]#
vi /etc/nvidia-container-runtime/config.toml
disable-require = false
#swarm-resource = "DOCKER_RESOURCE_GPU"

[nvidia-container-cli]
#root = "/run/nvidia/driver"
#path = "/usr/bin/nvidia-container-cli"
environment = []
#debug = "/var/log/nvidia-container-toolkit.log"
#ldcache = "/etc/ld.so.cache"
load-kmods = true
# uncomment and change to [true]
no-cgroups = true
#user = "root:video"
ldconfig = "@/sbin/ldconfig"
#alpha-merge-visible-devices-envvars = false

[nvidia-container-runtime]
#debug = "/var/log/nvidia-container-runtime.log"


# verify to run containers to login as a common user

[cent@dlp ~]$
podman pull tensorflow/tensorflow:2.4.1-gpu
[cent@dlp ~]$
podman images

REPOSITORY                       TAG        IMAGE ID      CREATED       SIZE
docker.io/tensorflow/tensorflow  2.4.1-gpu  edb49f6a133b  2 months ago  5.55 GB

# verify to run [nvidia-smi]

[cent@dlp ~]$
podman run --rm --security-opt=label=disable \
--hooks-dir=/usr/share/containers/oci/hooks.d/ \
tensorflow:2.4.1-gpu /usr/bin/nvidia-smi

Wed Apr 14 02:48:39 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  GeForce GTX 1070    Off  | 00000000:05:00.0 Off |                  N/A |
| 27%   34C    P5    19W / 180W |      0MiB /  8119MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

# verify to run Hello World test script on container

[cent@dlp ~]$
podman run -e NVIDIA_VISIBLE_DEVICES=all --rm --security-opt=label=disable \
--hooks-dir=/usr/share/containers/oci/hooks.d/ \
tensorflow:2.4.1-gpu \
python -c "import tensorflow as tf; hello = tf.constant('Hello, TensorFlow World'); tf.print(hello)"

2021-04-14 02:49:23.279865: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2021-04-14 02:49:25.600040: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-04-14 02:49:25.602451: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcuda.so.1
2021-04-14 02:49:25.826271: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:49:25.830279: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:05:00.0 name: GeForce GTX 1070 computeCapability: 6.1
coreClock: 1.7845GHz coreCount: 15 deviceMemorySize: 7.93GiB deviceMemoryBandwidth: 238.66GiB/s
2021-04-14 02:49:25.830343: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2021-04-14 02:49:25.843274: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2021-04-14 02:49:25.843332: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2021-04-14 02:49:25.851911: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2021-04-14 02:49:25.855268: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2021-04-14 02:49:25.864591: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2021-04-14 02:49:25.868827: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2021-04-14 02:49:25.871655: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2021-04-14 02:49:25.873914: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:49:25.878057: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:49:25.882200: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
2021-04-14 02:49:25.885576: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-04-14 02:49:25.887802: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:49:25.891768: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:05:00.0 name: GeForce GTX 1070 computeCapability: 6.1
coreClock: 1.7845GHz coreCount: 15 deviceMemorySize: 7.93GiB deviceMemoryBandwidth: 238.66GiB/s
2021-04-14 02:49:25.891820: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2021-04-14 02:49:25.891851: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublas.so.11
2021-04-14 02:49:25.891878: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcublasLt.so.11
2021-04-14 02:49:25.891901: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcufft.so.10
2021-04-14 02:49:25.891924: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcurand.so.10
2021-04-14 02:49:25.891948: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusolver.so.10
2021-04-14 02:49:25.891971: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcusparse.so.11
2021-04-14 02:49:25.891997: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudnn.so.8
2021-04-14 02:49:25.912150: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:49:25.916250: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:49:25.920061: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
2021-04-14 02:49:25.921970: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
2021-04-14 02:49:26.648781: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:
2021-04-14 02:49:26.648842: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267]      0
2021-04-14 02:49:26.648861: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0:   N
2021-04-14 02:49:26.654316: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:49:26.659628: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:49:26.663482: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:941] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-04-14 02:49:26.667005: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 7446 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:05:00.0, compute capability: 6.1)
Hello, TensorFlow World
Matched Content